Synaptic Scaling in Combination with Many Generic Plasticity Mechanisms Stabilizes Circuit Connectivity
نویسندگان
چکیده
Synaptic scaling is a slow process that modifies synapses, keeping the firing rate of neural circuits in specific regimes. Together with other processes, such as conventional synaptic plasticity in the form of long term depression and potentiation, synaptic scaling changes the synaptic patterns in a network, ensuring diverse, functionally relevant, stable, and input-dependent connectivity. How synaptic patterns are generated and stabilized, however, is largely unknown. Here we formally describe and analyze synaptic scaling based on results from experimental studies and demonstrate that the combination of different conventional plasticity mechanisms and synaptic scaling provides a powerful general framework for regulating network connectivity. In addition, we design several simple models that reproduce experimentally observed synaptic distributions as well as the observed synaptic modifications during sustained activity changes. These models predict that the combination of plasticity with scaling generates globally stable, input-controlled synaptic patterns, also in recurrent networks. Thus, in combination with other forms of plasticity, synaptic scaling can robustly yield neuronal circuits with high synaptic diversity, which potentially enables robust dynamic storage of complex activation patterns. This mechanism is even more pronounced when considering networks with a realistic degree of inhibition. Synaptic scaling combined with plasticity could thus be the basis for learning structured behavior even in initially random networks.
منابع مشابه
Analysis of Synaptic Scaling in Combination with Hebbian Plasticity in Several Simple Networks
Conventional synaptic plasticity in combination with synaptic scaling is a biologically plausible plasticity rule that guides the development of synapses toward stability. Here we analyze the development of synaptic connections and the resulting activity patterns in different feed-forward and recurrent neural networks, with plasticity and scaling. We show under which constraints an external inp...
متن کاملIntegrated Mechanisms of Anticipation and Rate-of-Change Computations in Cortical Circuits
Local neocortical circuits are characterized by stereotypical physiological and structural features that subserve generic computational operations. These basic computations of the cortical microcircuit emerge through the interplay of neuronal connectivity, cellular intrinsic properties, and synaptic plasticity dynamics. How these interacting mechanisms generate specific computational operations...
متن کاملThe Dialectics of Hebb and Homeostasis within Neural Circuits
It has now been 18 years since the publication of our landmark paper on synaptic scaling (Turrigiano et al., 1998). This study demonstrated the existence of a form of synaptic plasticity with fundamentally different characteristics from “Hebbian” mechanisms such as LTP and LTD, and suggested that synaptic scaling could serve to counteract the destabilizing forces induced by learning or experien...
متن کاملMulticontact Co-operativity in Spike-Timing-Dependent Structural Plasticity Stabilizes Networks.
Excitatory synaptic connections in the adult neocortex consist of multiple synaptic contacts, almost exclusively formed on dendritic spines. Changes of spine volume, a correlate of synaptic strength, can be tracked in vivo for weeks. Here, we present a combined model of structural and spike-timing-dependent plasticity that explains the multicontact configuration of synapses in adult neocortical...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کامل